AIAA-94-4325.CP

MULTIDISCIPLINARY OPTIMIZATION METHODS FOR AIRCRAFT PRELIMINARY DESIGN

by Ilan Kroo, Steve Altus, Robert Braun,
Peter Gage, and lan Sobieski®

Stanford University, Stanford, California

Abstract
This paper describes a research program aimed at improved
methods for multidisciplinary design and optimization of
large-scale aeronautical systems. The research involves
new approaches to system decomposition, inter-
disciplinary communication, and methods of exploiting
coarse-grained parallelism for analysis and optimization.
A new architecture, that involves a tight coupling between
optimization and analysis, is intended to improve efficien-
cy while simplifying the structure of multidisciplinary,
computation-intensive design problems involving many
analysis disciplines and perhaps hundreds of design vari-
ables. Work in two areas is described here: system decom-
position using compatibility constraints to simplify the
analysis structure and take advantage of coarse-grained
parallelism; and collaborative optimization, a decomposi-
tion of the optimization process to permit parallel design
and to simplify interdisciplinary communication require-
ments.

Introduction
The design of complex systems often involves the work of
many specialists in various disciplines, each dependent on
the work of other groups. When a single chief designer or
core team is able to develop and apply design tools in all
disciplines, difficulties in communication and organization
are minimized. As design problems become more com-
plex, the role of disciplinary specialists increases and it be-
comes more difficult for a central group to manage the pro-
cess. As the analysis and design task becomes more
decentralized, communications requirements become more
severe. These difficulties with multidisciplinary design are
- particularly evident in the design of acrospace vehicles, a
process that involves complex analyses, many disciplines,
and a large design space. Advances in disciplinary analy-
ses in the last two decades have only aggravated these
problems, increasing the amount of shared information and
outpacing developments in interdisciplinary communica-
tions and system design methods.

Aecrospace design methods based on the model of a central
designer have been widely used in aircraft conceptual de-
sign for decades and have proven very effective when re-
stricted to simple problems with very approximate analy-
ses. These large, monolithic, analysis and design codes are
truly multidisciplinary, but as analyses have become more
complex such codes have grown so large as to be incom-
prehensible and difficult to maintain.

® Department of Aeronautics and Astronautics
© 1994 by Ilan Kroo. Published by the American Institute

of Acronautics and Astronautics, Inc. with permission. 697

Since few know what is included in the code, results are
hard to explain and not credible. When simplified to be
manageable, the analysis becomes simplistic and again
produces results that are incredible. Moreover, complex
interconnections between disciplines, even in simpler pro-
grams make modification or extension of existing analyses
difficult. The problems are evidenced by the use of very
simplified aecrodynamics in synthesis codes that deal with
hundreds of different analyses. Discussions in the litera-
ture of multidisciplinary design problems involving more
complex analyses are almost invariably restricted to two
or (rarely) three codes. The difficulties involved in deal-
ing with large multidisciplinary problems lead to such re-
sults as limited design "cycling”, cruise-designed wings
with off-design "fixes", and an inability to efficiently con-
sider innovative configurations. A need exists, not simply
to increase the speed of the analyses, but rather to change
the structure of such design problems to simultaneously
improve performance and reduce complexity.

This paper introduces new architectures for the design of
complex systems and describes tools that may aid in the
implementation of these schemes. The approaches consid-
ered here include, first, the simplification and decomposi-
tion of analyses using numerical optimization and, next,
the transformation of the design problem itself into paral-
lel, collaborative tasks. A decomposition tool based on a
genetic algorithm is introduced to aid in problem formula-
tion.

Although one often thinks of multidisciplinary optimiza-
tion of an aircraft configuration as proceeding logically
from geometrical description to disciplinary analyses to
performance constraint evaluation, the actual structure of
analyses in an aircraft conceptual design method is much
more complex. Figure 1 shows the connections between
just some of the subroutines in one such program (Ref. 1).

COrag CLwmex [€ 2541
o [] S
"' S

e A

Figure 1. Connections between analyses
in an aircraft design problem.

Figure 2 illustrates the connections among analyses in a
more structured format as described in reference 2. Here,
it is assumed that routines are executed serially, from the
upper left to the lower right. Lines connecting one routine
to another on the upper right side thus represent feed-
forward, while lines to the left or below represent an itera-
tive feed-back.

From Optimiser

To Optimiser

Figure 2. Connections among analyses as viewed in a de-
pendency diagram.

Planning programs such as DeMaid (Ref, 2) can be used to
re-order and arrange analyses to minimize the extent of
feed-back between groups, but, in general, leave an itera-
tive system. The desirability of removing large-scale iter-
ation from such systems has been described in Refs. 34,
which cite increased function smoothness and system
comprehensibility as advantages. One approach to creat-
ing DAGs (directed acyclic graphs) from complex, itera-
tive analysis structures is to use optimization to enforce
the convergence constraint explicitly. That is, an auxiliary
variable representing the starting “guess” for the iteration
is added to the list of optimization design variables along

" with an additional “compatibility” constraint that repre-
sents the convergence criterion. Such an approach leads
to smoother functions for the optimizer and is often more
robust than conventional fixed-point iteration, The result-
ing analysis structure is shown on the left side of figure 3.

When one applies the same concept to the feed-forward
connections as well, the structure on the right side of the
figure is produced. This strikingly simple system repre-
sents a decomposition of the original problem that is not
only free of iteration, but also parallel. The optimization
process enforces the requirement that the results of one
computation match the inputs to another, permitting serial
tasks to be parallelized in a transparent manner. As the
optimization proceeds, the discrepancy between assumed
inputs (auxiliary design variables) and computed values is
reduced to a specified feasibility tolerance.

i

698

B

To Optinsicer To Optindiser

Figure 3. Decomposition using compatibility constraints

Through the compatibility constraints, the optimizer en-
forces the requirement that the various subproblems are
using consistent data, as the auxiliary variables are driven
toward their computed counterparts. This allows the sub-
problems to be run in parallel even though they form an
overall serial task. While this can improve computational
efficiency in some cases, it may have even greater impact
in the development, maintenance, and extension of analy-
ses for multidisciplinary optimization, since each subprob-
lem (which may correspond to one discipline) communi-
cates with other groups only through the optimizer.

Application to an Aircraft Design Problem
Decomposition with compatibility constraints was studied
in an aircraft design problem using the program, PASS
(Ref. 5). PASS is an aircraft synthesis code with dozens
of disciplinary analysis routines, combined with NPSOL,
a numerical optimizer based on a sequential quadratic pro-
gramming algorithm. (Ref. 6) . The problem studied here
involves minimization of direct operating cost for a medi-
um-range commercial transport, with 13 design variables
and nine constraints. Design variables included: maxi-
mum take-off weight, initial and final cruise altitudes,
wing area, sweep, aspect ratio, avg. t/c, wing position on
fuselage, tail aspect ratio, take-off flap deflection, sea-
level static thrust, max. zero fuel weight, and actual take-
off weight. Constraints included: range, climb rates and
gradients, field lengths, stability, surface maximum Cj ’s,
and maximum weights.

The analysis was decomposed into three parts as shown in
figure 4. Each part contains several analysis routines, with
the resulting groups representing (roughly) structures,
high-speed aerodynarnics, and low-speed performance.
The decomposition introduces five auxiliary design vari-
ables and their five associated compatibility constraints
represented by the dashed lines in the figure.

Figure 4. Decomposition of an aircraft design problem
into three subproblems.

Despite the increased size of the decomposed problem, the
computation time for a converged solution is actually re-
duced by 26%. A more interesting measure of computa-
tional efficiency is the number of calls to various analysis
subroutines. PASS routines are relatively simple, and the
overhead involved in the optimization can be significant
compared to the actual analyses. Since the present method
of decomposition is intended for analyses that are more
complex, the efficiency of the scheme is best measured by
the number of calls to analysis subroutines. The total
number of subroutine calls is shown in figure 5. Not only
is there a 29% decrease in computation for the simple, se-
quential execution of the decomposed problem, but paral-
lel execution of the three subproblems decreases the com-
putation time by 69%.

15000 N
12500} ‘ Lowspeed
10000 | B Cruise

T
13 Design Variables
9 Con struints

Number of Analysis Subvoutine Cails

18 Design \ariables
14 Congraints

w2\

Basline PASS Sequential 3-Part Pro jpcted Paralld 3-Part

Figure 5. Results of 3-part decomposition of aircraft de-
sign problem. Solved using PASS and NPSOL on an IBM
RS/6000.

Solution on a Heterogeneous Distributed Network

The aircraft design problem has been solved on a hetero-
geneous distributed network as shown in figure 6. The
three analysis groups wait for the communication subrou-
tine to write the latest values of the design variables to a
file. They then compute the constraints (or objective) for
which they are responsible, and write the results to another
file. The communications subroutine reads the results and
sends them to NPSOL., which returns a new set of design

- 699

variable values. This file-sharing technique is simple but
computationally expensive, and is intended not to show
gains in computational efficiency, but rather to demon-
strate the feasibility of parallel execution of the decom-
posed system.

NPSOL
ry 18 Design Vaciables
IBM n.wono/r.—'
Structures Cruim Lowspesd
Subproblem Subproblem Subproblem
poc
Creinimg Clmb2Grad
TOWCamia 7o CLVeriEngOu
Ly . RangeConweraint
ZFW Conotraint TOFildLa
XCOTOWConseraint
XCOZFWConetraiot
TBM RS/6000 y Sun SPARC IPX Sun SPARC 10

Figure 6. Aircraft design problem solved on a heterogene-
ous distributed network.

The simplification of the analysis by decomposition was
evident in the size of the database required for each sub-
problem, averaging about half the size of that for the inte-
grated problem. This makes it easier for a user to write,
maintain, and modify that set of analyses without detailed
knowledge of other disciplines.

The compatibility constraint, y = y', may be posed in sev-
eral forms. Since numerical optimizers can be sensitive
to such details of problem formulation, a systematic study
of the effect of changing the form of compatibility con-
straints was undertaken. The following examples were
considered:

1, vy -y < g
2. (y-y"?% <)
3. y/y! = 1% g
4. 1In(y/y') = 11 g

The limits & - &4 were adjusted to demand a consistent
level of accuracy, but the compatibility constraint scaling
is not easily established and so the optimization was run
with a variety of scalings. The data shown in Table 1 is
thus a measure not only of the relative computation times
associated with the various forms of the compatibility con-
straints, but also of the sensitivity of each to scaling. The
convergence rates are high enough for each form that it
may be assumed that a "good"” scaling can be found for
any of the forms. The results show that differences of
squares are faster than the other forms, possibly because it
avoids switching of active constraint sets.

Form Total $%Converged CPU CPU
Runs Avg. Min.
y-y' 86 87 22.0 17.5
yv-yh2 27 89.3 18.1 13.6
y/y! 20 100 21.0 18.3
iIn(y/y’) 3¢ 88.9 20.7 17.4

Table 1. Results with different forms of constraints

D ition of the Desien P .
Collaborative Optimizath

Summary

Although the decomposition of analyses using compatibil-
ity constraints simplifies the complex analysis structure in
MDO problems and can be used to parallelize the process,
it is still subject to the following criticism: 1. The individ-
ual disciplines provide analysis results but do not have a
clear mechanism for changing the design. The actunal de-
sign work is relegated to a central authority (the single op-
timizer) and the disciplines are not permitted (o apply their
design expertise to satisfy discipline-specific problems.

2. The communication requirements are severe. Informa-
tion on all constraints and gradients must be passed to the
system level optimizer. 3. All design variables, con-
straints, and analysis interconnections must be established
a priori and described to the system optimizer.

Especially in cases that involve weak interdisciplinary
coupling and a large number of discipline specific con-
straints, this centralized design approach is not appropri-
ate. In certain special cases a hierarchical decomposition
is possible. Such cases involve local variables that have
no effect on other disciplines and have been widely report-
. ed (Refs. 7-8). Unfortunately most problems do involve
substantial interdisciplinary coupling and non-hierarchical
decomposition schemes (Ref. 9) similar to the method de-
scribed in the previous section are suggested.

One may, however, extend the idea of compatibility con-
straints to produce a two-level decomposition from an ar-
bitrarily connected set of analyses. This section describes
how this may be done so as to decompose, not just the
analyses, but the design process itself. The basic structure
is illustrated in figure 7. Individual disciplines involve
both analysis and design responsibilities, communicating
(directly in a single program, or over a network) with a
system-level coordination routine,

700

Subspace S
Optimizatior Optimization
¢ X
Analysis h iplinary
e
SM i Oﬂ%on
Coordination e
Disciplinary
Analysis

Figure 7. Basic structure for collaborative optimization.

The basic approach requires that the decentralized groups
satisfy their local constraints so that discipline-specific in-
formation need not be communicated to other groups. In
order to assure that the local groups can succeed in this
task, they are permitted to disagree with other groups dur-
ing the course of the design process. The objective of the
subspace optimizers is to minimize these interdisciplinary
discrepancies while satisfying the specified constraints.
The system level coordination optimizer is responsible for
ensuring that these discrepancies are made to vanish.
More specifically, the system level optimizer provides tar-
get values for those parameters that are shared between
groups. The goal of each group is to match the system tar-
get values to the extent permitted by local constraints.

This approach, termed collaborative optimization, has sev-
eral desirable features. Domain-specific design vari-
ables, constraints, and sensitivities remain associated with
a specific discipline and do not need to be passed among
all groups. This permits disciplinary problems to be ad-
dressed by experts who understand the physical signifi-
cance of the variable or constraint as well as how best to
solve the local problem. Subspace optimization problems
may be changed (e.g. adding constraints or local variables)
without affecting the system-level problem. The method
provides a general means by which the design process
may be decomposed and parallelized, and in some imple-
mentations does not depend on the use of gradient-based
optimization.

Several versions of the basic collaborative optimization
scheme have been investigated and the specific approach
is perhaps best described by example. The subsequent
sections provide both a very simple example, intended to
further describe the methodology, and a more realistic
multidisciplinary aircraft design problem.

Simoke Application of Collaborative Optimizati
As a first example of collaborative optimization, consider
minimization of Rosenbrock's valley function:

min: J(xy,Xp) = 100 (x- X122 + (1 - x,)?

Solution of this two-variable, unconstrained, quartic prob-
lem with various optimization techniques is presented in
Ref. 1. In the present analysis, all optimization is per-
formed with the sequential quadratic programming algo-
rithm, NPSOL. From a starting point of [0.0, 0.0], using
analytic gradients, NPSOL reached the the solution in 13
iterations. For demonstration purposes, assume that we are
dealing with a more complex, multidisciplinary optimiza-
tion problem than the Rosenbrock valley in which the de-
sign components are computed by different groups. Al-
though this computationally-distributed problem may be
reassembled and solved by a single optimizer, one of the
significant advantages of collaborative optimization is that
this integration is not necessary. For example, suppose
computation of the Rosenbrock objective function is de-
composed among two groups as,

min: J=] 1+ 12

where: J; (x1,x) = 100 (x5 - x;2)2

and: J2(X1) = (1 - xl)z

Let one analysis group be responsible for computing J;
and another J,. Since the computation is distributed, col-
laboration is required to ensure that the groups have a con-
sistent description of the design space. Among numerous
strategies which achieve the necessary coordination, two
example approaches are illustrated in figure 8. In both
cases, the system-level optimizer is used to orchestrate the
overall optimization process through selection of system-
level target variables. A system-level target is needed for
each variable which is used by more than one analysis
group (e.g., y; which is computed in analysis group 1 and
input to analysis group 2). The subspace optimizers have
as design variables all inputs required by their analysis
group. Note that for analysis group 1, this includes the lo-
cal variable x, which is not used in analysis group 2. The
goal of each subspace optimizer is to minimize the dis-
crepancy between the local versions of each system-level
target variable and the target variable itself. Treatment of
this discrepancy minimization is the source of the differ-
ences between the two collaborative strategies. In the first
approach (left side of figure 8), a summed square discrep-
ancy is minimized and the collaborative framework does
not introduce any additional constraints to the analysis
group. Note that this subspace objective function is at least
quadratic but is generally more nonlinear. In the approach
depicted on the right, a constraint is added for each sys-
tem-level target needed by the analysis group (Ref. 10). If
the system-level target is represented locally as an input,
this added constraint is linear; otherwise, the added con-
straint is nonlinear. In this formulation, an extra design
variable (x3) is required and the objective is linear.

701

Using each of these formulations, collaborative solutions
to the Rosenbrock valley function were obtained. Results
of the simulations are highlighted in Table 2. In the first
formulation of these problems, the system-level objective
gradient and constraint Jacobian information is obtained
through finite-differencing of the optimized subproblems.
Furthermore, each subspace optimization is initiated with-
out the benefit of information from previous runs.

-~ windny
= <
:. gt
LTSN 1-ky% "
win Jg in Jy
win Jy min dy
L 5 lli-old 1. lli;,’ll " (:_ w s a3 u:’_ .
Be il Botrdn ast-rOsal |nsv-ndsy
$afzg 50 ey
% 1 Bein®yy% LA)
1 t
"= "“’z"t"’ y2=01 -l')’
A S T dyys=v1 72 71 = 1001ng - 52 r2-01 -2
-‘r"t"ﬁ"(n ‘11'51 doys=yi+y2
Hen J2-13

Figure 8. Two collaborative optimization approaches

for Rosenbrock's valley function
Collsborutive Framewoark Chamcteristics
L) Objective System Constrait~ Subspace Optimization Total
Solution Strategy 1
Finito-difference Finito-difference Fixed Xipnjgial 1556 (1262)
Heesian reset
Finite-difference Post-optimality Fired Ripiial TS5 (94)
Hessian reset
Finite-difforenice Post-optimality Kinitia] @ =x*G-1) 390
Hessian reset
ﬁ o« I'ﬂ' M . l-y .. G) -“G_l) 385
Hessien retained
10 analytic Post-optimality Xinial @ =x*G-1 516
Hessian resct
Solution Strategy 2
Finite-difference Finite-difference Fized x;p0001 345 (248)
Hessian reset
Finite-difference Post-optimality Fixed Xypiq 336 (48)
Hessian reset
Fini Hff Post imali Riios G)-‘.G_l) 208
Hessian reset
Finito-difference Post-optimality Linitial @ =2*G-1) 141
Hessian retained
10 analytic Post-optimality Xiniia @ =x*G-1) 260
Hessian reset

Table 2: Performance of two collaborative optimization
solution strategies for Rosenbrock's valley function

Obtaining the system-level objective gradient and con-
straint Jacobian by finite-differencing optimized subprob-
lems requires numerous subproblem optimizations (cach
with numerous subspace iterations) for every system-level
iteration. Furthermore, these subspace optimizations must
be tightly converged 10 to yield accurate derivatives. To
further minimize numerical error, additional calculations
were performed to select appropriate finite-difference in-
tervals. These extra iterations are shown in parenthesis in
Table 1. Without the proper choice of finite-difference in-
terval, the convergence of the collaborative strategies was
not robust to changes in the starting point.

To reduce both computational expense and numerical er-
ror, optimal sensitivity information from the converged
subproblem may be used to provide system-level deriva-
tives. (Ref. 11) This is possible since the system-level tar-
gets are treated as parameters in the subproblems and as
design variables in the system optimization. Hence, the
main problem Jacobian is equivalent to the subproblem
dl */dp. The required information is generally available at
the solution of each subspace optimization problem (with
litte to no added cost) through the following equation.
(Refs.11-13.) .

dJ = g.. + T‘ ?_c_l

" dp

Here A* represents the Lagrange multiplier vector at the
solution. Because of the special structure of the collabora-
tive optimization solution strategies, this equation be-
comes,

W 2x=x") forsolu !
=5~ - 2 trate;
dp 9p or solution strategy
dJ =)J.-a-(-:i—z A 0 for solution strategy 2

dp 'dp -1

Note that in either of the proposed collaborative formula-
tions, calculation of the required partial derivatives is trivi-
al. However, although many optimizers provide an esti-
mate of A" as part of the termination process, accurate
estimates are only ensured when the problem has con-
verged tightly (Refs. 12-13). For this reason, solution

~ strategy 1 may be preferred. As shown in Table 1, using
this post-optimality information results in significant com-
putational savings by reducing both the finite-difference
interval computations and the number of calls to each sub-
space optimizer. Note that in this case, finite-differencing
is still used to estimate the system-level objective gradient.

Computational expense can be reduced further by starting
the subspace optimizers from their previous solutions and
with knowledge of the previous Hessian. While starting
the subspace optimization runs from the previous solutions

is effective in both solution strategies, use of the previous
Hessian information is of greater benefit for solution strat-
egy 2. This performance gain results because knowledge
of the previous solution's active constraint set is of signifi-
cance for strategy 2.

In another approach, an extra system-level design variable
is added (J0) which also serves as the system-level objec-
tive function (see Fig. 3). This concept which may be
adapted to either solution strategy results in a linear sys-
tem-level objective and completely eliminates the finite-
difference requirements between the system and subspace
levels. The analysis group which computes the actal ob-
jective function (group 2 in this case) is now also responsi-
ble for matching the target system objective. This added
responsibility causes more difficulty for the subspace anal-
ysis (as evident in the total number of function evalua-
tions). Furthermore, an increased number of system-level
iterations is required. An alternate means of eliminating
these finite-difference requirements is to rely on additional
post-optimality information in the subspace analysis to es-
timate the change in actual objective function with respect
to a change in the parameters as,

Ao _ (a:.,. ax;)

dp ox; A op

spplicati \ircraft Design Probl

Figure 9 shows the arrangement of analyses in an example
aircraft design problem. Here the goal is to select values of
the design variable that maximize range with a specified
gross weight. The figure shows the analysis grouped into
three disciplinary units, acrodynamics, structures, and per-
formance. The problem stated in this way is not directly
executable in parallel. Dependent disciplines must wait
for their inputs variables to be updated before they may
execute. The issue is further complicated when there are
feedbacks as between structures and aerodynamics due to
acroelastic effects. In such a case there is an iterative loop
that may take several iterations to converge before subse-
quent disciplines (in this case, performance) may be exe-
cuted.

Wing Ama_

Aspect Ratio
ok -9 /D, Ng
Wing
Stn. Weight
Twist Angle
Pertormance |L-F2NZE

Figure 9. Example multidisciplinary aircraft design prob-

lem: analysis structure.

Simoke Application of Collaborative Optimizati
As a first example of collaborative optimization, consider
minimization of Rosenbrock's valley function:

min: J(xy,Xp) = 100 (x- X122 + (1 - x,)?

Solution of this two-variable, unconstrained, quartic prob-
lem with various optimization techniques is presented in
Ref. 1. In the present analysis, all optimization is per-
formed with the sequential quadratic programming algo-
rithm, NPSOL. From a starting point of [0.0, 0.0], using
analytic gradients, NPSOL reached the the solution in 13
iterations. For demonstration purposes, assume that we are
dealing with a more complex, multidisciplinary optimiza-
tion problem than the Rosenbrock valley in which the de-
sign components are computed by different groups. Al-
though this computationally-distributed problem may be
reassembled and solved by a single optimizer, one of the
significant advantages of collaborative optimization is that
this integration is not necessary. For example, suppose
computation of the Rosenbrock objective function is de-
composed among two groups as,

min: J=] 1+ 12

where: J; (x1,x) = 100 (x5 - x;2)2

and: J2(X1) = (1 - xl)z

Let one analysis group be responsible for computing J;
and another J,. Since the computation is distributed, col-
laboration is required to ensure that the groups have a con-
sistent description of the design space. Among numerous
strategies which achieve the necessary coordination, two
example approaches are illustrated in figure 8. In both
cases, the system-level optimizer is used to orchestrate the
overall optimization process through selection of system-
level target variables. A system-level target is needed for
each variable which is used by more than one analysis
group (e.g., y; which is computed in analysis group 1 and
input to analysis group 2). The subspace optimizers have
as design variables all inputs required by their analysis
group. Note that for analysis group 1, this includes the lo-
cal variable x, which is not used in analysis group 2. The
goal of each subspace optimizer is to minimize the dis-
crepancy between the local versions of each system-level
target variable and the target variable itself. Treatment of
this discrepancy minimization is the source of the differ-
ences between the two collaborative strategies. In the first
approach (left side of figure 8), a summed square discrep-
ancy is minimized and the collaborative framework does
not introduce any additional constraints to the analysis
group. Note that this subspace objective function is at least
quadratic but is generally more nonlinear. In the approach
depicted on the right, a constraint is added for each sys-
tem-level target needed by the analysis group (Ref. 10). If
the system-level target is represented locally as an input,
this added constraint is linear; otherwise, the added con-
straint is nonlinear. In this formulation, an extra design
variable (x3) is required and the objective is linear.

701

Using each of these formulations, collaborative solutions
to the Rosenbrock valley function were obtained. Results
of the simulations are highlighted in Table 2. In the first
formulation of these problems, the system-level objective
gradient and constraint Jacobian information is obtained
through finite-differencing of the optimized subproblems.
Furthermore, each subspace optimization is initiated with-
out the benefit of information from previous runs.

-~ windny
= <
:. gt
LTSN 1-ky% "
win Jg in Jy
win Jy min dy
L 5 lli-old 1. lli;,’ll " (:_ w s a3 u:’_ .
Be il Botrdn ast-rOsal |nsv-ndsy
$afzg 50 ey
% 1 Bein®yy% LA)
1 t
"= "“’z"t"’ y2=01 -l')’
A S T dyys=v1 72 71 = 1001ng - 52 r2-01 -2
-‘r"t"ﬁ"(n ‘11'51 doys=yi+y2
Hen J2-13

Figure 8. Two collaborative optimization approaches

for Rosenbrock's valley function
Collsborutive Framewoark Chamcteristics
L) Objective System Constrait~ Subspace Optimization Total
Solution Strategy 1
Finito-difference Finito-difference Fixed Xipnjgial 1556 (1262)
Heesian reset
Finite-difference Post-optimality Fired Ripiial TS5 (94)
Hessian reset
Finite-difforenice Post-optimality Kinitia] @ =x*G-1) 390
Hessian reset
ﬁ o« I'ﬂ' M . l-y .. G) -“G_l) 385
Hessien retained
10 analytic Post-optimality Xinial @ =x*G-1 516
Hessian resct
Solution Strategy 2
Finite-difference Finite-difference Fized x;p0001 345 (248)
Hessian reset
Finite-difference Post-optimality Fixed Xypiq 336 (48)
Hessian reset
Fini Hff Post imali Riios G)-‘.G_l) 208
Hessian reset
Finito-difference Post-optimality Linitial @ =2*G-1) 141
Hessian retained
10 analytic Post-optimality Xiniia @ =x*G-1) 260
Hessian reset

Table 2: Performance of two collaborative optimization
solution strategies for Rosenbrock's valley function

Obtaining the system-level objective gradient and con-
straint Jacobian by finite-differencing optimized subprob-
lems requires numerous subproblem optimizations (cach
with numerous subspace iterations) for every system-level
iteration. Furthermore, these subspace optimizations must
be tightly converged 10 to yield accurate derivatives. To
further minimize numerical error, additional calculations
were performed to select appropriate finite-difference in-
tervals. These extra iterations are shown in parenthesis in
Table 1. Without the proper choice of finite-difference in-
terval, the convergence of the collaborative strategies was
not robust to changes in the starting point.

To reduce both computational expense and numerical er-
ror, optimal sensitivity information from the converged
subproblem may be used to provide system-level deriva-
tives. (Ref. 11) This is possible since the system-level tar-
gets are treated as parameters in the subproblems and as
design variables in the system optimization. Hence, the
main problem Jacobian is equivalent to the subproblem
dl */dp. The required information is generally available at
the solution of each subspace optimization problem (with
litte to no added cost) through the following equation.
(Refs.11-13.) .

dJ = g.. + T‘ ?_c_l

" dp

Here A* represents the Lagrange multiplier vector at the
solution. Because of the special structure of the collabora-
tive optimization solution strategies, this equation be-
comes,

W 2x=x") forsolu !
=5~ - 2 trate;
dp 9p or solution strategy
dJ =)J.-a-(-:i—z A 0 for solution strategy 2

dp 'dp -1

Note that in either of the proposed collaborative formula-
tions, calculation of the required partial derivatives is trivi-
al. However, although many optimizers provide an esti-
mate of A" as part of the termination process, accurate
estimates are only ensured when the problem has con-
verged tightly (Refs. 12-13). For this reason, solution

~ strategy 1 may be preferred. As shown in Table 1, using
this post-optimality information results in significant com-
putational savings by reducing both the finite-difference
interval computations and the number of calls to each sub-
space optimizer. Note that in this case, finite-differencing
is still used to estimate the system-level objective gradient.

Computational expense can be reduced further by starting
the subspace optimizers from their previous solutions and
with knowledge of the previous Hessian. While starting
the subspace optimization runs from the previous solutions

is effective in both solution strategies, use of the previous
Hessian information is of greater benefit for solution strat-
egy 2. This performance gain results because knowledge
of the previous solution's active constraint set is of signifi-
cance for strategy 2.

In another approach, an extra system-level design variable
is added (J0) which also serves as the system-level objec-
tive function (see Fig. 3). This concept which may be
adapted to either solution strategy results in a linear sys-
tem-level objective and completely eliminates the finite-
difference requirements between the system and subspace
levels. The analysis group which computes the actal ob-
jective function (group 2 in this case) is now also responsi-
ble for matching the target system objective. This added
responsibility causes more difficulty for the subspace anal-
ysis (as evident in the total number of function evalua-
tions). Furthermore, an increased number of system-level
iterations is required. An alternate means of eliminating
these finite-difference requirements is to rely on additional
post-optimality information in the subspace analysis to es-
timate the change in actual objective function with respect
to a change in the parameters as,

Ao _ (a:.,. ax;)

dp ox; A op

spplicati \ircraft Design Probl

Figure 9 shows the arrangement of analyses in an example
aircraft design problem. Here the goal is to select values of
the design variable that maximize range with a specified
gross weight. The figure shows the analysis grouped into
three disciplinary units, acrodynamics, structures, and per-
formance. The problem stated in this way is not directly
executable in parallel. Dependent disciplines must wait
for their inputs variables to be updated before they may
execute. The issue is further complicated when there are
feedbacks as between structures and aerodynamics due to
acroelastic effects. In such a case there is an iterative loop
that may take several iterations to converge before subse-
quent disciplines (in this case, performance) may be exe-
cuted.

Wing Ama_

Aspect Ratio
ok -9 /D, Ng
Wing
Stn. Weight
Twist Angle
Pertormance |L-F2NZE

Figure 9. Example multidisciplinary aircraft design prob-

lem: analysis structure.

Posed as a collaborative optimization problem, the design
task is decomposed as shown in figure 10. Each of the dis-
ciplinary units becomes an independent subproblem. Each
sub-problem consists of two parts: a subspace optimizer
and an analysis routine. The optimizer modifies the input
values for the sub-problem analysis and uses the analysis
output values to form the constraints and objective. The
optimizer also accepts a set of target values for these vari-
ables. The goal of the subspace optimization is to adjust
the local design variables to minimize the difference be-
tween local variable values (both inputs to, and results
from, the sub-problem analysis) and the target values
passed to the subspace optimizer. To designate these tar-
get values the CO methodology adds a system-level opti-
mizer. This optimizer specifies the target values of the de-
sign parameters and passes them to each of the sub-
problems. The system-level optimizer's goal is to adjust
the parameter values so that the objective function (in this
case, range) is maximized while the system-level con-
straints are satisfied.

In this problem there are three system-level constraints.
Note from the figure that these constraints are simply the
values of the objective function of each of the sub-
problems. Thus, the scheme allows the subproblems to
temporarily disagree with each other but the equality con-
straints (J1=J=J3=0) at the system-level require that in
the end, they all agree. So at the end of the optimization
all local variable values will be the same as the target val-
ues (those with the "o" subscript) designated by the sys-
tem-level (i.e. Ry = R).

System Level Optimizer

max Ry

Xo = Ro, Swy, ARg, Phip,
UD, ngy, Ww,

8.0 =0,J3=0,4=0

Sub-Problem #1 Sub-Problem #3
[PERFORIARCE |
minimize J¢ minimize % minimize Jy
Jd= (AR-ARg? Ja= (AR-ARo)? he R-RP?
+ (Phi - Ph2 + (Phi - Phi)2 + (W - W)2
+(L0-LOR +(Sw - Sw)2 +(LD-LDO R
+(ng -ngp +(ng -ng)?
+{Sw - Swg2 + (Ww - Wwg2 X= LD, Ww
X = AR, Phi -
X b X A
uD
ng « {PH.AR,Sw
LD« {{ARSw)

Figure 10. Collaborative form of aircraft design problem.

703

For example, assume that the system-level optimizer
chooses an initial set of design parameters, X,,. Each of
the sub-levels will then attempt to match this set. Howev-
er, if the super-level asks for a physically impossible com-
bination, then the sub-problem will only be able to return a
non-zero value of its objective function J. This non-zero
value is then recognized by the system-level and a more
feasible choice of target parameters (X)) is selected. This
next set allows the sub-problem to obtain a minimum ob-
jective function (J1) lower than with the previous set. It is
through such a mechanism that the sub-problems influence
the progress of the design optimization.

Via a similar mechanism, constraints that exist at the
sub-problem level may influence the target (system-level)
variable values, and, through this, the value used in an-
other discipline. In this way, constraints that affect one
discipline may implicitly affect another without the need
for an explicit transfer of information concerning the con-
straint to a foreign discipline.

One of the primary advantages of this arrangement is that
the system is now executable in parallel. In fact, this ar-
chitecture minimizes the interdiscipinary communication
requirements, making it ideal for network implementa-
tions. This example problem has been run both on a sin-
gle workstation and on a system of three networked com-
puters.

Results
Figure 11 shows the optimization history of the design

variables. Range was computed by the performance anal-
ysis using the Breguet range equation. Wing weight was
computed using statistically-based equations for typical
weights of transport aircraft wings given maximum load
factor, aircraft weights, and wing geometry. The twist an-
gle was also calculated by the structures discipline. It rep-
resents the maximum structural twist of a wing under cer-
tain acrodynamic loads. These twists are computed for a
given maximurm gust loading which is calculated in the
aerodynamics discipline. The twist itself feeds back into
the aerodynamics discipline and changes aerodynamic
loading on the wing. The aerodynamics discipline uses
simple relations to produce the aerodynamic loading and
the lift-to-drag ratio (used in calculating range).

Scaled Varisble Value

o~ fenge
18, Sihto SIPPOR ot000..|| 5" W
—— AR
14, —t— ™
12 S and e Mgt
10. -
[8 b o aa
s ddrd d
‘ v r ¥ 4
2
0.

Figure 11: History of Super-Level Variable Changes

The figure shows that the variables nearly reach their con-
verged values within 10 iterations of the starting point.
Within each of these iterations there are many sub-level it-
erations as the sub-levels attempt to match the system-
level target variable values. To illustrate this process the
variation in the parameter aspect ratio is shown in Figure
12aand b.

18.

-~ Range
AR

Scaled Variable Value

20. 25.
System Level lteration

14. \
13. \
3 12. -—'
1.
§ ——=== Asrodynamics
10. s SEUCTOS
& SysemTerget
9.
8. - - -
0. 10. 20. 30.
Subspace Reration Number

Figure 12a&b : Changes in Aspect Ratio at System and
Subsystem Levels

Figure 12a shows the variation of aspect ratio and range
versus system-level iterations. Figure 12b shows sub-
space results during the first five system-level iterations.
Included on the plot are the target values for aspect ratio
designated by the system-level optimizer along with the
value of aspect ratio used in the local sub-problems of
structures and acrodynamics. Note that initially these
groups start out with their own guesses for aspect ratio
(the structures group guesses a low 8.0, the acrodynami-
cists hope it will be 14.0). They receive the target value
from the system-level optimizer (12.0) and immediately
try to match it. For the next two system-ievel iterations
the target value of aspect ratio is not changed by the sys-
tem optimizer. At the third iteration, though, thetarget val-
ue for aspect ratio is reduced to about 11.5. One can see
that the sub-problems immediately try to match this value.

Note that the sub-problems occasionally do not exactly
match the target value as may be seen after system-level
iteration #2;. This is because, as was described earlier in
this section, the sub-problems are trying to achieve the
best match for the entire set of design variables not simply
the one shown here. So in this instance, the sub-problem
found that allowing a slight deviation in the local value of
aspect ratio allowed a greater degree of compatibility be-
tween all the variable values used in that sub-problem and
their corresponding target values.

As described in the previous section, the gradient of the
objective function and the gradient of the constraintsat the
system level may be computed analytically based on opti-
mal sensitivity results. In fact, in this problem it was
found that these gradients need to be specified analytical-
ly for computational stability. Obtaining gradients via fi-
nite-differencing can lead to spurious gradient values and
difficulties for the system level optimizer. These same
problems result when the tolerances of the sub-problems
are not set properly and the sub-problems do not reach a
satisfactory solution.

704

\ Tool for D ition Planni

Motivation: S f the D -
Whether the analysis is decomposed using compatibility
constraints, or the design problem is decomposed using
collaborative optimization, the structure of the decomposi-
tion determines the efficiency of the decomposed system.
For example, consider two subroutines with computation
times A and B, with n inputs to A, and m intermediate
values computed by A which are inputs to B. To compute
gradients of quantities computed by B with respect to the
inputs of A , the computational time using finite differenc-
es is n(A+B). If we use decomposition, the computation
time for all the gradients becomes nA + mB. When n is
much larger than m (contraction), decomposition will gen-
erally reduce computation time. If, however, m is larger
than n, decomposition may increase computation time.
Such ideas were considered in the decomposition of the
aircraft design problem in figure 4, but only in a qualita-
tive fashion. Moreover, the ad hoc procedure was quite
time-consuming. To exploit contraction, avoid expansion,
and assign analyses to subproblems efficiently, an auto-
matic tool is desirable. Such a program is described here.
It uses a genetic algorithm to find a decomposition that
minimizes the estimated computational time of a gradient-
based optimization of the resulting decomposed system.

Given a list of analyses and the global variables which are
inputs and outputs to each, the program creates a depen-
dence matrix of integers. The element Dep(i,j) corre-
sponds to the number of outputs from routine i which are
inputs to routine j. If the routines are executed sequential-
ly, entries in Dep which are below the main diagonal are
feedbacks, and entries above the main diagonal are feed-
forwards. As the orders of the routines are changed, the
structures of the dependence matrix changes. By includ-
ing information about where in the ordering there are
"breaks” between subproblems, various objective func-
tions can be evaluated from the dependence matrix.

Several methods for task-ordering have been developed
previously, but not with the objective of scheduling the
optimization of a decomposed system. The Design Man-
ager's Aid, DeMaid (Ref. 2), for example, uses a heuristic
approach to order tasks into a system of subproblems.
One of the results of the DeMaid heuristic is that feedback
loops, particularly long loops, are removed. Figure 13 il-
lustrates the ordering of tasks, as described in reference 2,
that minimizes a measure of feedback extent, J. The ob-

jective function used here is:
n i-l
J =Y, Depiy) (i)

i=1j=1

and reflects the "total length of feedback" in the system.
The solution shown in Figure 13, was obtained by the

705

preseat scheduling algorithm using this objective. It is
nearly identical to the one obtained by DeMaid, which
does not employ an explicit objective function. Although
the subproblems are in a different order, each consists of
the same analyses as in the DeMaid problem, except the
second, which is a union of two subproblems from the De-
Maid solution.

113

L LTI

e s
.

. -
. e

e
-

3
11*
1

1
|
i
1
!
|
|
|
|
i

Figure 13. Solution of the DeMaid example problem us-
ing extent of feedback as objective function.

Minimizing feedback extent is not the goal for a system
that is decomposed using compatibility constraints and op-
timization. The difference between feedback and feedfor-
ward disappears, since the subproblems run in parallel.
Therefore the length of an individual feedback is unimpor-
tant, and some feedback between the subproblems is not
disadvantageous. Conversely, the number of feedforwards
between subproblems is important. Thus, a rather differ-
ent objective is used for the optimal decomposition formu-
lation. The objective used here is an explicit estimate of
the computation time for optimization of the decomposed
design problem.

The time estimate assumes the following about the optimi-
zation of the system: gradients are estimated by finite-
differencing; no second-derivatives are computed (the es-
timated Hessian is updated); and gradient calculations
dominate the computation time. These assumptions are
consistent with aircraft sizing problems and with the use
of NPSOL, a commonly used optimization package. In
addition, it is assumed that the subproblems can be execut-
ed in parallel. Finally,we assume that gradients for a sub-
problem depend on all routines within that subproblem.

The objective function is then:
J= Toptimimtion = (Niine searches) * (Teach line search)

Niine searches iS proportional to the total number of vari-

ables. Therefore the number of line searches varies as:
Niine searches = Ndesign vars + Nauxiliary design vars

For a typical gradient-based optimization each line search
requires that each subroutine be executed once for each in-
dependent variable (for gradients) and then an average of
twice more for the line search itself. The total number of
calls to the routines in each group is then:

Nealls; = 2 + Ngegion vars(sub i) * Nauxiliary var (sub i)

where Ndesign vars (sub i) is the number of design vari-
ables that are inputs to routines in the i subproblem.
Since the subproblems are run in parallel, the time for
each line search is determined by the slowest subproblem:
Tline i = Max{Ncalls; * X (execution times of routines in
subproblem i)}

The full objective function is therefore:
J = Ndesign vars + Nauxiliary design vars) * Tline i

A Genetic Aleorithm for T .

Planning an efficient decomposition is an optimization
task in itself. The optimizer seeks to find the correct loca-
tion for each subroutine in the analysis procedure. Con-
ventional calculus-based optimizers are not effective in
this domain, but a number of genetic algorithms have been
developed for the solution of planning problems.

Genetic algorithms are designed to mimic evolutionary se-
lection. A population of candidate designs is evaluated at
each iteration, and the candidates compete to contribute to
the production of new designs. Each individual is repre-
sented by a string, which is a coded listing of the values of
the design variables. The entire string is analogous to a
chromosome, with genes for the different features (or vari-
ables). When individuals are selected to be parents for
offspring designs, their genetic strings are recombined in a
crossover operation, so that the new designs have elements
" of two earlier designs. A mutation operation also allows
modification of elements of the new individual so that t
may include new features that were not present in either

parent.

The genetic string for the decomposition problem is an in-
teger vector of length n+m, where » is the number of anal-
ysis subroutines and m is the number of potential break
points (allowing m+1 independent sub-tasks). Each popu-
lation member is a permutation of the integers between 1
and n+m. For a task with 10 subroutines to be split into 3
sub-tasks, n=10 and m=2. A sample genetic string and the
computational system that it represents are shown in Fig-
ure 14,

706

7 | Subroutine 7
9 } Subroutine 9
1 Subroutine 1
11] Break
10 [Subroutine 1(-)l
3 Subroutine 3
6 Subroutine 6
4 Subroutine 4
12 Break
2 Subroutine 2
5 } Subroutine 5
i!__ Subroutine 8
Genetic Independent
String Subtasks

Figure 14. Decoding of genetic string into subroutine or-
der and subproblems.

Simple crossover operators are not appropriate for permu-
tation problems, because they do not guarantee offspring
that include exactly one copy of each design variable, and
no duplicates. Several crossover schemes have been de-
veloped for use in planning problems. Six of these were
compared by Starkweather et al. (Ref 14). They found
that the best overall performance (on a travelling salesman
problem and a warehouse/shipping scheduling problem)
was achieved by position-based crossover, originally intro-
duced by Syswerda (Ref. 15). This scheme was adopted
for the decomposition problem.

Position-based crossover requires the random selection of
several positions in the string. The entries at these posi-
tions are passed directly to the offspring by one parent.
The remaining positions are filled by variables from the
second parent, in the order that they appear in that parent.
In Figure 15, b1, d1 and g1 are inherited directly from the
first parent, 5o 8, ¢, ¢, f must be supplied by the second
parent. They appear in the order a2, f2, ¢2, e2 and fill po-
sitions 1, 3, 5, 6 of the offspring.

Parent 1 |al bl cl dl el fl gl|

parent 2 |b2 d2 a2 £f2 c2 g2 e2]

* * *

Offspring |[a2 bl f2 dl c2 e2 gl}

Figure 15. Position-based crossover.

The mutation operator is applied pointwise along the
string. When a point is selected to undergo mutation, the
variable at that position is swapped with another at a dif-
ferent point in the string. The second point is randomly
selected between 1 and a user-specified maximum muta-

tion range. The genetic algorithm uses tournament selec-
tion to choose parents to participate in reproduction into
the next generation. Each time a parent is needed, two
members of the current population are selected at random.
Their fitness is compared, and the individual with greater
fitness becomes the parent.

The following parameter settings were used in studies re-
ported here: crossover probability is fixed at 0.9; point-
wise mutation probability is 0.01; and maximum mutation
range is half the total string length, or (n+m)/2.

Results

The DeMaid problem, described previously, was solved
with this objective, assuming that the overall design prob-
lem consisted of as many as 9 subproblems. The optimal
decomposition is shown in figure 16. The estimated opti-
mization time for this system is 3.147, compared with De-
Maid’s ordering which yields a time of 3.325. Asis clear
from the figure, the extent of feedback is substantially
greater for this solution despite its more efficient parallel
decomposition.

o ey

" e
e}
-1

it
111

%
[+
%

i
1
1

-
PEE PRIEIE PENE PRPMNE MEERE PERRMED N FRED BRI

Ren SADARD DA SARD JWEI WMIBAA L

R
1 I 1 ' 1
Figure 16. The DeMaid sample problem as ordered for
optimization with decomposition using compatibility con-
straints.

1

T
|
|
'
]
]
|
i
|
!
i
]
4
|

Using this objective function, the optimal decomposition
tool has been applied to PASS, yielding a structure very
similar to that produced manually and shown in figure 4.

Continuing Work
Other objective functions which will soon be formulated
include one for decomposition with compatibility con-
straints assuming gradient information from automatic dif-
ferentiation rather than finite-differencing, and one for col-
laborative optimization. The fact that a new objective for
a different type of problem can be easily inserted makes
this program a flexible and useful tool which can be adapt-
ed to a variety of different formulations.

707

Conclusions
The present work represents an initial look at new archi-
tectures for multidisciplinary optimization applied to the
preliminary design of complex systems. Continuing work
includes evaluation of a variety of implementation strate-
gies, further development of decomposition and optimiza-
tion tools compatible with these approaches, and applica-
tion to larger scale design problems. The work reported
here has been supported by NASA Langley Research Cen-
ter, NASA Ames Research Center, and Boeing Commer-
cial Airplane Group.

References
1. Kroo, L, "An Interactive System for Aircraft Design and
Optimization", ATAA Paper #92-1190, Feb. 1992.
2. Rogers, J L., “DeMaid -- A Design Manager’s Aid for
Intelligent Decomposition, Users Guide,” NASA TM
101575, March 1989.
3. Gage, P., Kroo, 1., "Quasi-Procedural Method and Opti-
mization", AIAA/NASA/AirForce Multidisciplinary Opti-
mization Conference, Sept. 1992.
4. Cousin, J., Metcalfe, M., "The BAe Ltd Transport Air-
craft Synthesis and Optimization Program,” AIAA 90-
3295, Sept. 1990.
5. Kroo, L., Takai, M., "A Quasi-Procedural, Knowledge
Based System for Aircraft Synthesis”, AIAA-88-6502.
6. Gill, P.E., Murray, W., and Wright, M.H., Practical Op-
timization, Academic Press, Inc., 1981,
7. Haftka, R.T., "On Options for Interdisciplinary Analysis
and Design Optimization", Structural Optimization, Vol.
4, No. 2, June 1992,
8. Padula, S., Polignone, D., "New Evidence Favoring
Multilevel Decomposition and Optimization,” Third Sym-
posium on MDO, Sept. 1990.
9. Sobieszczanski-Sobieski, J., "Optimization by Decom-
position: A Step from Hierarchic to Non-Hierarchic Sys-
tems,” NASA CP-3031, Sept. 1989.
10. Sobieszczanski-Sobieski, J., “Two Alternate Ways For
Solving the Coordination Problem in Multilevel Optimiza-
tion,” Structural Optimization, Vol. 6, pp. 205-215, 1993.
11. Braun, R.D., Kroo, .M., and Gage, P.J., "Post-
Optimality Analysis in Aerospace Vehicle Design,” AIAA
93-3932, Aug. 1993,
12. Hallman, W., "Sensitivity Analysis for Trajectory Op-
timization Problems," AIAA 90-0471, January 1990.
13. Beltracchi, TJ., and Nguyen, HN., "Experience with
Parameter Sensitivity Analysis in FONSIZE," AIAA 92-
4749, Sept. 1992,
14, Starkweather, T., McDaniel, S., Mathias, K., Whitley,
D., Whitley, C., "A Comparison of Genetic Sequencing
Operators”, Proceedings of the 4th International Confer-
ence on Genetic Algorithms, Belew, R. & Booker, L., ed.
Morgan Kaufmann, San Mateo, 1991.
15. Syswerda, G. "Schedule Optimization Using Genetic
Algorithms", in Handbook of Genetic Algorithms. Davis,
L., ed. Van Nostrand Reinhold, New York, 1990.

